Why a python multiprocessing performance improves with only a square root of the number of cores used?

0

I am attempting to implement multiprocessing in Python (Windows Server 2012) and am having trouble achieving the degree of performance improvement that I expect. In particular, for a set of tasks which are almost entirely independent, I would expect a linear improvement with additional cores.


I understand that–especially on Windows–there is overhead involved in opening new processes [1], and that many quirks of the underlying code can get in the way of a clean trend. But in theory the trend should ultimately still be close to linear for a fully parallelized task [2]; or perhaps logistic if I were dealing with a partially serial task [3].

However, when I run multiprocessing.Pool on a prime-checking test function (code below), I get a nearly perfect square-root relationship up to N_cores=36 (the number of physical cores on my server) before the expected performance hit when I get into the additional logical cores.

enter image description here
Here is a plot of my performance test results (“Normalized Performance” is [run time with 1 core] divided by [run time with N cores]).

Is it normal to have this dramatic of diminishing returns with multiprocessing? Or am I missing something with my implementation?


import numpy as np
from multiprocessing import Pool, cpu_count, Manager
import math as m
from functools import partial
from time import time

def check_prime(num):

    #Assert positive integer value
    if num!=m.floor(num) or num<1:
        print("Input must be a positive integer")
        return None

    #Check divisibility for all possible factors
    prime = True
    for i in range(2,num):
        if num%i==0: prime=False
    return prime

def cp_worker(num, L):
    prime = check_prime(num)
    L.append((num, prime))


def mp_primes(omag, mp=cpu_count()):
    with Manager() as manager:
        np.random.seed(0)
        numlist = np.random.randint(10**omag, 10**(omag+1), 100)

        L = manager.list()
        cp_worker_ptl = partial(cp_worker, L=L)

        try:
            pool = Pool(processes=mp)   
            list(pool.imap(cp_worker_ptl, numlist))
        except Exception as e:
            print(e)
        finally:
            pool.close() # no more tasks
            pool.join()

        return L


if __name__ == '__main__':
    rt = []
    for i in range(cpu_count()):
        t0 = time()
        mp_result = mp_primes(6, mp=i+1)
        t1 = time()
        rt.append(t1-t0)
        print("Using %i core(s), run time is %.2fs" % (i+1, rt[-1]))

Note: I am aware that for this task it would likely be more efficient to implement multithreading, but the actual script for which this one is a simplified analog is incompatible with Python multithreading due to GIL.